5 09, 2010
  • DOCSIS 3.0 Cable Modems Support IPv6

DOCSIS 3.0 Tutorial – DOCSIS Does IPv6

2021-11-24T09:23:28-05:00September 5th, 2010|

Everyone is familiar with Internet Protocol version 4 (IPv4) addresses. You probably even set them up in your home network, such as 192.168.1.1 IPv4 is described in IETF publication RFC 791 (September 1981), which replaced the previous version RFC 760, dating back to January 1980. So its safe to say that IPv4 has been around for some time and serving us quite well. New in DOCSIS 3.0 has support for IPv6. Why do we need this new version? IPv6 has a vastly larger address space than IPv4. This results from the use of a 128-bit address, whereas IPv4 uses only 32 bits. Believe it or not, major cable operators are running out IP address. This is due to more customers, not just for cable modems, but also for set top boxes and VoIP eMTAs. Further, deployed in cable networks are IP devices such as power supplies with embedded cable modems for monitoring voltage, temperature, current and more. All networks are getting more IP devices requiring more and more IP addresses, so the 2128 addresses allocated in IPv4 are no longer sufficient and we turn to the 3.4×1038 addresses provided in IPv6.

1 08, 2010
  • Hacking DOCSIS Cable Modems

Hacking DOCSIS Cable Modems

2021-08-17T13:18:52-04:00August 1st, 2010|

Fundamental Precautions You Should Take to Secure Your Network DOCSIS security wholes are a serious problem, even if you are a major MSO (Multiple System Operator). Recently a reader contacted me and said that theft of service, especially uncapping cable modems via hacking, was still impacting his network. Not surprisingly, one vendor's CMTS was able to ward off the hacker's while another vendor's CMTS was unable to prevent the uncapping and subsequent theft of service. I will protect the vendor's identities because I believe that the CMTS is the first line of defense. Vendors have put into place very effective, CMTS specific techniques, such as Cisco's TFTP-Enforce which prohibits a cable modem from registering and coming on line if there is no matching TFTP traffic through the CMTS preceding the registration attempt. But often individual techniques are "hacked" (such as in the TFTP-Enforce bypass method found on hacker sites). What this indicates is that any reliance on a single point or method of hack-proofing your network WILL NOT WORK. You must implement a layered approach consisting of a number of CMTS, DHCP, TFTP and potentially SNMP and Kerbos related methods. The later would apply for MTAs and set top boxes. For now we will just focus on cable modems and the realm of CMTSs and DHCP/TFTP servers. Here are is the bare minimum of what you should be doing:

9 03, 2009
  • docsis qos

DOCSIS and Cable Modems – How it works :: Quality of Service

2021-08-17T13:22:59-04:00March 9th, 2009|

DOCSIS 1.0 enabled data over coax with a "best effort" service using a data request-grant methodology. DOCSIS 1.1 and subsequent specifications added guaranteed Quality of Service (QoS) by providing Unsolicited Grant Synchronization (UGS) which means that a cable modem does not have to send a data request in order to receive a bandwidth grant from the CMTS. The new UGS service is an enabling technology which has allowed cable operators to successfully deploy the highly revenue generating Voice-over-IP (VoIP) services. In the following sections I will illustrate the differences between best-effort (request-grant) and QoS (UGS) services.

16 02, 2009

Troubleshooting DOCSIS – VoIP Impairments > Delay & Jitter

2021-08-17T15:54:55-04:00February 16th, 2009|

In this blog I will address delay and jitter as they pertain to VoIP in a DOCSIS network.  Delay, jitter and packet loss are the three primary impairment in a VoIP network, but packet loss was addressed in my Troubleshooting DOCSIS - VoIP Impairments > Packet Loss blog. After packet loss, delay is the second most disruptive impairment in VoIP networks.  The effects of delay to the caller generally appear as echo and talker overlap. In PSTN communications, echo can arise as acoustic echo between the mouthpiece and

15 02, 2009

Troubleshooting DOCSIS – VoIP Impairments > Packet Loss

2021-08-17T15:45:30-04:00February 15th, 2009|

In this blog I am going to focus on VoIP packet loss, which is just one of the three (3) primary types of VoIP impairments that are present in a DOCSIS network. I will cover many RF and IP terms in this blog that I have not discussed in my previous tutorials, not to worry! This terminology is all fodder for future blogs. :-) To review, the three fundamental impairments which impact call quality of VoIP communications are as follows: * Packet Loss – The complete or partial loss of a packet containing actual voice payload. * Delay – The time a packet takes to traverse the space between the source and destination of a voice call. The space is comprised of both the physical distance the data must travel in addition to the active network routing and switching elements, which contribute additional delay. * Jitter – The variance of inter-packet arrival time from one transmitted packet to the next sequential packet.

13 02, 2009

Troubleshooting DOCSIS – VoIP Impairments

2023-02-18T10:49:47-05:00February 13th, 2009|

In this blog I am going to digress for a moment from my standard DOCSIS 101 tutorial and spend a little time on DOCSIS troubleshooting basics, especially with respect to Voice-over-Internet Protocol (VoIP). I am doing this as due to many offline questions specific to this topic. Don't worry, though I may start to inter-mix some troubleshooting blogs now and again, just check the DOCSIS 101 page to stay on top of the latest DOCSIS tutorial blogs.

Go to Top