

Agenda

- DOCSIS 3.0 Overview
- DOCSIS 3.0 terminology
- DOCSIS modem registration
- Advanced Troubleshooting

Drivers for D3.0 – Other than Verizon & AT&T!

DOCSIS 3.0 Overview

- DOCSIS 3.0 Specification(s) DOCSIS 3.0 Interface Specifications (Released December 2006) Equipment readily available Downstream data rates of 160 Mbps or higher 256QAM => ~40Mbps Channel Bonding 4 or more channels 8 x 256QAM => ~304 Mbps Upstream data rates of 120 Mbps or higher Channel Bonding 4 or more channels 64QAM => ~30Mbps Internet Protocol version 6 (IPv6) 4 x 64QAM =>~108 Mbps - Current System (IPv4) is limited to 4.3B numbers IPv6 greatly expands the number of IP addresses Expands IP address size from 32 bits to 128 bits IPv6 supports 3.4×10³⁸ addresses; Colon-Hexadecimal Format 4923:2A1C:0DB8:04F3:AEB5:96F0:E08C:FFEC
- 100% backward compatible with DOCSIS 1.0/1.1/2.0

DOCSIS Comparison

DOCSIS Version	Max Downstream Throughput (net)	Max Upstream Throughput (net)
1.x	42.88 (38) Mbit/s	10.24 (9) Mbit/s
2.0	42.88 (38) Mbit/s	30.72 (27) Mbit/s
3.0	n x 42.88 (38) Mbit/s 8 x 38 = 304 Mbit/s	n x 30.72 (27) Mbit/s 4 x 27 = 108 Mbit/sec

© The Volpe Firm | Proprietary and Confidential

DOCSIS® 3.0 Assumed Downstream RF Channel Transmission Characteristics

Parameter	Value
Frequency range	108 to 1002 MHz edge to edge
RF channel spacing (design bandwidth)	6 MHz
Transit delay from head-end to most distant customer	≤ 0.800 ms (typically much less)
Carrier-to-noise ratio in a 6 MHz band	Not less than 35 dB
Carrier-to- CTB, CSO, X-MOD, Ingress	Not less than 41 dB
Amplitude ripple	3 dB within the design bandwidth
Group delay ripple in the spectrum occupied by the CMTS	75 ns within the design bandwidth
Micro-reflections bound for dominant echo	-10 dBc@ <= 0.5 μsec -20 dBc@ <= 1.5 μsec -30 dBc@ > 1.5 μsec
Maximum analog video carrier level at the CM input	17 dBmV

DOCSIS® 3.0 Assumed Upstream RF Channel Transmission Characteristics

Parameter	Value
Frequency range	5 to 85 MHz edge to edge
Carrier-to-interference plus ingress ratio	Not less than 25 dB
Carrier hum modulation	Not greater than –23 dBc (7%)
Burst noise	Not longer than 10 µsec at a 1 kHz average rate for most cases
Amplitude ripple 5-42 MHz	0.5 dB/MHz
Group delay ripple 5-42 MHz	200 ns/MHz
Micro-reflections—single echo	-10 dBc@ <= 0.5 μsec -20 dBc@ <= 1.0 μsec -30 dBc@ > 1.0 μsec
Seasonal and diurnal reverse gain (loss) variation	Not greater than 14 dB min to max

The Bonded Upstream

[©] The Volpe Firm | Proprietary and Confidential

Power Variance – 6dB Bonded vs. Unbonded

Constellation	Constellation Gain G _{const} Relative to 64 QAM (dB)	L	P _{min} (dBmV) M	н	P _{max} (dBmV) TDMA	P _{max} (dBmV) S-CDMA	P _{min} - G _{const} (dBmV)	P _{max} - G _{const} (dBmV) TDMA	P _{max} - G _{const} (dBmV) S-CDMA
QPSK	-1.18	17	20	23	61	56	18.18	62.18	57.18
8 QAM	-0.21	17	20	23	58	56	17.21	58.21	56.21
16 QAM	-0.21	17	20	23	58	56	17.21	58.21	56.21
32 QAM	0.00	17	20	23	57	56	17.00	57.00	56.00
64 QAM	0.00	17	20	23	57	56	17.00	57.00	56.00
128 QAM	0.05	17	20	23	N/A	56	16.95	N/A	55.95

DOCSIS 3.0 Cable Modem 1 Channel Transmit Power Levels

DOCSIS 3.0 Cable Modem 4 Channel Transmit Power Levels

Constellation	Constellation Gain G _{const} Relative to 64 QAM (dB)	L (P _{min} (dBmV) M	н	P _{max} (dBmV) TDMA	P _{max} (dBmV) S-CDMA	P _{min} - G _{const} (dBmV)	P _{max} - G _{const} (dBmV) TDMA	P _{max} - G _{const} (dBmV) S-CDMA
QPSK	-1.18	17	20	23	55	53	18.18	56.18	54.18
8 QAM	-0.21	17	20	23	52	53	17.21	52.21	53.21
16 QAM	-0.21	17	20	23	52	53	17.21	52.21	53.21
32 QAM	0.00	17	20	23	51	53	17.00	51.00	53.00
64 QAM	0.00	17	20	23	51	53	17.00	51.00	53.00
128 QAM	0.05	17	20	23	N/A	53	16.95	N/A	52.95

© The Volpe Firm | Proprietary and Confidential

Measuring Upstream Carrier Amplitudes

Real Life Scenario

♦ Cable8/1/3-upstream0 WLN15 - 0 - 0 - 0/25.0 Mhz WL_WLN15 25.000 MHz
 ♦ Cable8/1/3-upstream1 WLN15 - 0 - 0 - 0/28.2 Mhz WL_WLN15 28.200 MHz
 ♦ Cable8/1/3-upstream2 WLN15 - 0 - 0 - 0/31.4 Mhz WL_WLN15 31.400 MHz
 ♦ Cable8/1/3-upstream3 WLN15 - 0 - 0 - 0/34.6 Mhz WL_WLN15 37.000 MHz
 93.76 (73.66%) 30.93 (●24.30%) 2.59 (♥2.04%)
 126.85 77 30.6 🚃

- Upstream at 37 MHz 64-QAM, 6.4 MHz BW
 - Twice as wide and 3 dB lower than other carriers
- 24.3% FEC errors, 30.6 dB MER
- 25 MHz, 28.2 MHz, 31.4 MHz @ 64-QAM, 3.2 MHz okay
- Why? What is the problem, what is the recommended solution without going into the field?
- cable upstream 3 equalization-coefficient

Terminology & Registration

© The Volpe Firm | Proprietary and Confidential

Downstream Terminology

- Primary Downstream Channel(s)
 - Masterclock, UCD, MAPs, etc.
 - CMs Registration + PDU
- Non-Primary Capable Channel(s)
 - PDU only
 - D3.0 modems
- Downstream Service Group (DSG)
 - DS bonded CHs available to CM
- Upstream Channel Descriptor UCD
 - MAC message to CMs describing US CH

Upstream Terminology

Upstream Channel

- Physical Upstream Channel (DOCSIS RF), or
- Logical Upstream Channel (share same RF ch)
- Upstream Bonding Group (UBG)
 - Set of US bonded channels for CM

DOCSIS Communications Model

Cable Modem Registration - DOCSIS 1.x/2.0

- CM registration requires the physical layer for signal transport

- DOCSIS and IP protocol layers are necessary to communicate the proper messages for modems to come online
- The next slides illustrate the interaction of these layers

© The Volpe Firm | Proprietary and Confidential

(17)

[©] The Volpe Firm | Proprietary and Confidential

CM Registration Summary

- Downstream channel search
- Ranging
- DHCP
- ToD
- TFTP
- Registration
- Optional BPI Encryption
- Ranging occurs at least every 30 seconds when online
 - T3 timeout part of this and typically indicate upstream problems
 - T4 timeout typically indicate downstream problems

D3.0 Modem Registration

Advanced Troubleshooting

Advanced Field Troubleshooting

- Why is DOCSIS 3 Troubleshooting Different?
 - Multiple Bonded Channels
 - Downstream
 - Not that different.
 - The channels are constant carrier
 - Multiple downstream channels have been around forever
 - Upstream
 - Still most vulnerable portion of plant
 - The modem is no longer limited to a single upstream transmit path
 - In some ways this is actually easier with DOCSIS 3.0

You Likely Know Your Problems

- Downstream Typically not so bad
 - CTB, CSO, CNR under digital channels
 - Levels not correct into home (high, low, tilt)
 - Suck-outs, especially if you have contractors doing disconnects
 - Cheap modulators & upconverters never save you money
 - DOCSIS 3.0 headaches Channel bonding, isolation, legacy
- Upstream Your Achilles heal
 - Easy: AWGN noise, impulse noise, coherent noise, CPD, Laser clipping
 - Hard: Group delay, frequency response, micro-reflections
 - Insane: DOCSIS 3.0 multiple upstreams power levels
- Theft of Service

© The Volpe Firm | Proprietary and Confidential

Likely Upstream Problems

- Four times the US bandwidth (four bonded channels) creates a new dynamic for troubleshooting and monitoring:
- 6.4 MHz*4 = 25.6 MHz (without guard bands)
- Increased likelihood for laser clipping
- Increased probability for problems with ingress, group delay, microreflections, and other linear distortions
- Inability to avoid problem frequencies such as Citizens' Band, Ham, Shortwave, and hop between CPD 6MHz spacing
- Where are you going to put your sweep points?

Test Equipmenthas

http://commiscotrak03:8080/Acterna0C5/demodOuery.de?action_FLEX_PortSelectedBoartLabel_8PM 7.Po - Internet_Explorer_optimized	Vanceo	
🛞 🛞 = 🔀 Mtp://com/mcptrak03.8080/Action = 500 SelectedSportLabel=RPM 7 Port 18portType=RPM30008portLide=2346	💌 😔 🔀 Google	• م]
Efe Edt View Favorites Io + Favorites Inhttp://com	å• ⊠ · ⊡ ⊕•	Bage - Safety - Tools - 🔞 - 🛪
JOSU Pantrak Report ADAU Report ADAU <td><complex-block></complex-block></td> <td>724 Unique MAC#: 65 200 200 200 2200</td>	<complex-block></complex-block>	724 Unique MAC#: 65 200 200 200 2200
MIN: 23.96 AVG: 25.71 Center: 42.750 MHz		Stop: 85,000 MHz
Pocket. 425 Time: 2010-10.07 11 MAC: 00.24.82.60.06.74	- MER - UNEQ MER - Carrier Level - d With the ansatz - Carrier Level - d With the ansatz - carrier Level - d - d - d - d - d	Un-SQ Symbols

© The Volpe Firm | Proprietary and Confidential

Downstream Impairments

4		٠	~	*		٠	â;	讀	1	2	1	pie :	1	潮	1
*	*	*	4	*	æ	*	*	×.	N.	14		ipe.	1	*	j.
٠	4	2			۲	4	8	200	and the second s	15	1	- 1997		<i>1</i> 4	4
H	.5	۲		4	٠	3	4	ولمؤ	1	1	1		36	2	1
a .	5	æ	51		4			1	÷.	÷.	÷.	1. ES		*	1
Þ.		*		÷			Ø.	×.	1	*	\mathcal{H}_{i}^{n}	÷.	de	2.	1
*	*		#	*		+	Ħ	÷	. \$\$	*	V)	19	4	A.	1
*		÷	6	*	*	Æ	si	14	1	100		120	100	. 3 <u>6</u> 29	÷ę.
Goo	od N	1EF	2					No	ise						
								Gaus poor	sian ly de	noise fined	imp and	airme sprea	ents. ad ou	Cluste t.	ers
								Poss	ible (BE let	Cause Vels I	es: ow ir	nuts	to		

Low RF levels, low inputs to RF amplifiers

	۲	*	4	*	.*	*	۰
×.	7 89	b .	.*	. M	-	Å	. 🍇
· 🔶	*	Ý.	٠	. *	.*	÷	
*	- 🥵	¥	*	8	*	# 1	` *
*	£.	*	Ŕ	æ	÷	*	*
×		*	ę	19	*	*	*
*	٠	*	1	٠	٠.	*	. 🕊
*	4	a i	*	\$	*	4	à

Intermittent Interference

On/Off interference below the desired QAM signal. Isolated dots appear away from the main cluster.

Possible Causes:

Laser clipping, intermittent ingress (2-way radios & paging systems)

Downstream Impairments

* :	* :	ŧ,	÷	₹ę.	*	1	1
*	4	77		*	.*	÷.	3
*	ŧ.	1	٠	-4	8-	÷	.*
÷	₩.	R	4	-	*	-46	÷
*	\$ 2	8.	٠	•7	×	۶	14
	4	ŧ	ø.	ie:	* ę .	ð:	°.59
ø.	Ť	3	4	*	*	- 7	-
*	4	W	ħ	*	÷+	¥	÷,*

Compression

Non-linear distortion. Clusters are "pulled in" at the corners.

Possible Causes:

Overdriven or bad RF/IF amps, IF/RF filters, up/down converters, IF equalizers, bad clock recovery circuits

Phase Noise

Phase shift of I & Q data. The clusters appear to rotate around the center of the constellation.

Possible Causes: Headend IF amplifiers and Up/Down converters

6.20		200	and a second	-2:37	10	1.10	A. B.
$\ell_{c,2}^{(r_0)}$	19	100	N.W.	5. A.	14	12	in the second
TINE	Ser.	19	1.2	State .	824 A	12.4	Selly.
$\tilde{z}^{\mu}_{,\chi}$	1	-(-)X	200	Sec.	and the second	1.15	1
10,3	and a	N.	24	Sec.	8	2.2	$\{ \cdot \}$
2109. 2109.	100	167 A	5.4	100	And .	19. 10 A.	14 24 7.84
12	(inter	14.0	100	1	10.0	83	5 ²⁹ .5
12.41		and the second	12.2	11	2	1.8	Party -

Coherent Disturbance

Interference from a signal under the desired QAM signal. Clusters appear doughnut shaped.

Possible Causes:

Ingress, CW Interference

Modulation Error Ratio (MER)

- The quality of a QAM signal can be defined by the dispersion of the constellation's points considering the target value
- The error or dispersion power is calculated by the value mean square of the error vectors (real value VS target value)
- MER is the ratio in dB between the average power of the signal and the power of the error vectors

MER

BER	64-QAM MER	256-QAM MER	Quality
10 -10	>35	>35	Excellent
10 -8	27-34	31-34	Good
10 -6	23-26	28-30	Marginal
10 -5	<23	<28	Fail

Upstream Ingress Cancellation – On default

© The Volp 32 Proprietary and Confidential

Something New – DOCSIS 3.0

© The Volpe Firm | Proprietary and Confidential

Testing DOCSIS 3.0 Meter – JDSU / Viavi DSAM

	Cable Mode	em			NCT
Freq	Enc.	BW	Туре	Leve	I Head.
19.3	A-TDMA	6.4MHz	QAM16	35.8	19.2
25.7	A-TDMA	6.4MHz	QAM16	35.3	19.7
32.1	A-TDMA	6.4MHz	QAM16	36.3	18.7
38.5	A-TDMA	6.4MHz	QAM16	36.8	18.2
File	▲ Viev	N •	Limits	▲ S	ettings

▶ meas	sure		5 CSIS3 0
OFF			DOC256 80
through	put	platinumv11.	cm
+112000 +96000 +80000	upstream 4007	m 7 kb/s	+280000 +240000 +200000
+64000		downstream 189135 kb/s	+160000 +120000
+32000_ +16000_ 0	- 4x _bonded	8x bonded	+80000 +40000 0
File	 View 	^	

© The Volp 34 Proprietary and Confidential

DOCSIS 3.0 Channel Bonding Eight channel downstream

VeEX CX380 CM Screen Shot

Cable Modem											
>Home/Cable Modem											
Cable Modem	Web/FTP	Ping	Trace Route	1	/oIP						
Setup	Result	s	IP	Lin	ık 🛛			~ 4			
Downstream (Ch)	639.00	645.00	651.00	657.00			• D3	8x4	Chanr	iel Bond	ling:
Symbol Rate	5.361 MSps	5.361 MSps	5.361 MSps	5.361 N	/ISps			aile			U
Modulation	256 QAM	256 QAM	256 QAM	256 QA	M			ans			
Level	5.6 dBmV	5.3 dBmV	5.4 dBmV	5.8 dBi	mV						
SNR (dB)	45.1	45.3	45.4	45.8							
Pre-BER	0.0e+00	0.0e+00	0.0e+00	0.0e+0	0						
Pre-Error Seconds	0	0	0	0	Cable Medem	_					
Post-BER	0.0e+00	0.0e+00	0.0e+00	0.0e+0		- d					😑) (🔥) 🔁
Post-Error Seconds	0	0	0	0	>Home/Cable M	odem					
					Cable Modem	Web/F	IP I	Ping	Trace Route	VolP	
					Setup		Results		IP	Link	
		Page 1	of 3 🕑		Downstream (C	h) <mark>663.00</mark>	669.0	0	675.00	681.00	
TbI:VX_TEST	Loc:Com	cast Outlet	TP:Off		Symbol Rate	5.361 MS	ips 5.361	MSps	5.361 MSps	5.361 MSps	
					Modulation	256 QAM	256 G	AM	256 QAM	256 QAM	
					Level	5.8 dBm\	/ 6.0 dl	∃mV	5.4 dBmV	4.5 dBmV	
					SNR (dB)	44.6	45.2		45.4	43.0	
					Pre-BER	0.0e+00	0.0e+	00	0.0e+00	0.0e+00	
					Pre-Error Seco	nds <mark>0</mark>	0		0	0	
					Post-BER	0.0e+00	0.0e+	00	0.0e+00	0.0e+00	
					Post-Error Seco	onds <mark>0</mark>	0		0	0	
© The Volpe	Firm Proprie	etary and C	Confidential				•	Page 2 of 3	3 🕑		Ethernet Tools
					Tbl:VX_TEST	L	.oc:Comcast O	utlet	TP:Off	16-0	1-2012 12:44:51

A Clean Upstream: Or Is It for 64-QAM?

© The Volpe Firm | Proprietary and Confidential

Impact to Adaptive EQ from Impulse Noise

CISCOOPK#SCU DI	ny								
MAC Address	I/F	Sid	USPwr	USMER	Timing	DSPwr	DSMER	Mode	DOCSIS
			(dBmV)	(SNR)	Offset	(dBmV)	(SNR)		Prov
				(dB)			(dB)		
a47a.a4b7.c60e	C1/0/U0	1	45.75	36.12	2398	0.00		atdma*	1.1
a47a.a4b7.c60e	C1/0/U1	1	45.75	36.12	2333	0.00		atdma*	1.1
a47a.a4b7.c60e	C1/0/U2	1	45.75	36.12	2399	0.00		atdma*	1.1
a47a.a4b7.c60e	C1/0/U3	1	45.75	36.12	2399	0.00		atdma*	1.1
0023.74f6.7ad9	C1/0/U0	2	45.25	36.12	2400	0.00		atdma*	1.1
0023.74f6.7ad9	C1/0/U1	2	45.25	36.12	2400	0.00		atdma*	1.1
0023.74f6.7ad9	C1/0/U2	2	45.25	36.12	2397	0.00		atdma*	1.1
0023.74f6.7ad9	C1/0/U3	2	45.25	36.12	2400	0.00		atdma*	1.1
0026.2482.9dc4	C1/0/U0	3	44.25	36.12	3958	0.00		atdma*	1.1
0026.2482.9dc4	C1/0/U1	3	44.75	36.12	3958	0.00		atdma*	1.1
0026.2482.9dc4	C1/0/U2	3	44.75	36.12	2121	0.00		atdma*	1.1
0026.2482.9dc4	C1/0/U3	3	44.25	36.12	3958	0.00		atdma*	1.1
CiscoUBR#scm pl	hy								
MAC Address	I/F	Sid	USPwr	USMER	Timing	DSPwr	DSMER	Mode	DOCSIS
			(dBmV)	(SNR)	Offset	(dBmV)	(SNR)		Prov
				(dB)			(dB)		
a47a.a4b7.c60e	C1/0/U0	1	45.75	18.92	2398	0.00		atdma*	1.1
a47a.a4b7.c60e	C1/0/U1	1	45.75	36.12	2333	0.00		atdma*	1.1
a47a.a4b7.c60e	C1/0/U2	1	45.75	36.12	2399	0.00		atdma*	1.1
a47a.a4b7.c60e	C1/0/U3	1	45.75	36.12	2399	0.00		atdma*	1.1
0023.74f6.7ad9	C1/0/U0	2	45.25	36.12	2400	0.00		atdma*	1.1
0023.74f6.7ad9	C1/0/U1	2	45.25	36.12	2400	0.00		atdma*	1.1
0023.74f6.7ad9	C1/0/U2	2	45.25	36.12	2397	0.00		atdma*	1.1
0023.74f6.7ad9	C1/0/U3	2	45.25	36.12	2400	0.00		atdma*	1.1
0026.2482.9dc4	C1/0/U0	3	44.25	36.12	3958	0.00		atdma*	1.1
0026.2482.9dc4	C1/0/U1	3	44.75	36.12	3958	0.00		atdma*	1.1
0026.2482.9dc4	C1/0/U2	3	44.75	36.12	2121	0.00		atdma*	1.1
0026.2482.9dc4	C1/0/U3	3	44.25	36.12	3958	0.00		atdma*	1.1

© The Volp 3B Proprietary and Confidential

Ways to Mitigate Impact of Impulse Noise

- Clean up plant
- Improve robustness of modulation profile from:
 - cable modulation-profile 224 initial 5 34 0 48 16qam scrambler 152 no-diff 64 fixed qpsk1 1 2048
 - cable modulation-profile 224 station 5 34 0 48 16qam scrambler 152 no-diff 64 fixed qpsk1 1 2048
- To:
 - cable modulation-profile 224 initial 5 34 0 48 16qam scrambler 152 no-diff 384 fixed qpsk1 0 2048
 - cable modulation-profile 224 station 5 34 0 48 16qam scrambler 152 no-diff 384 fixed qpsk1 0 2048
- Changing 64 to 384 increases the preamble length, thus enhancing the training sequence on capturing the packet and lessening the effects of impulse noise
- Changing the 1 to a 0 enables dynamic interleaving mode, increasing the effectiveness of Forward Error Correction (FEC) as impulse noise increases in the system

Monitoring Transient Events?

- Laser Clipping or Impulse Noise for example...
 - Plan on laser clipping being a popular word

Two 64-QAM Bonded Channels

Laser Clipping – FP Laser

© The Volpe 42 Proprietary and Confidential

Laser Clipping – Hard to See

Ingress Under QAM

Laser Heterodyning

Digital Return – RF above 42 MHz

Partial Service Troubleshooting

a47a.a4b7.c60e 10.10.10.3

0026.2482.9dc4 10.10.10.2

- Partial Service exhibits itself as missing channels
- Does not exhibit as Packetloss or Throughput issue

C1/0/UB

C1/0/U0

w-online

online

2

з

0.50

-0.50

2332

2117

0

Ν

Ν

- An impaired service may or may not exhibit codeword errors and packetloss
- When troubleshooting impaired service, it is critical to view the performance of the individual upstream channels.

doc	csis		⊂i≡[i⊧ Matrix
38.20	0MHz QAM64	00	:07:11:05:D5:10
0.0%	Codeword Errors	0.0%	MER / Unequalized
0.0%	Carrier Level 12.9 dB	0.0%	Micro-reflection -41.3 dE
0.0%	0.3 dB/MHz	0.0%	Group Delay 30.6 ns/MHz
0.0%	Ingress Under Carrier - 57.5 dBc	0.0%	Impulse Noise 3.5
•			
	Packet Histo	ory	Live
< Back	View 🔺		Settings

▶ do	CSIS	50	Matrix			
0.0%	Codeword Errors	MER /	Unequalized			
0.0%	Carrier Level 0.0	м 0.0%	icro-reflection 0.0			
	In-Band Response		Group Delay			
	19.000MHz / QA 25.400MHz / QA 31.800MHz / QA	M64 / 6.400MHz M64 / 6.400MHz M64 / 6.400MHz	doc 38.20	SIS	00	ڪ≡رF Matrix 07:11:05:D5:10:
	38.200MHz / QA 38.200MHz / QA	AM64 / 6.400MHz	0.0%	Codeword Errors 0	0.0%	MER / Unequalized 44.7 / 35.0 dB
ОК	Cancel		0.0%	Carrier Level 12.9 dB	0.0%	Micro-reflection -41.3 dB
			0.0%	In-Band Response 0.3 dB/MHz	0.0%	Group Delay 30.6 ns/MHz
			0.0%	Ingress Under Carrier - 57.5 dBc	0.0%	Impulse Noise 3.5
			•			•
				Packet Histo	ory	Live
			< Back	View 🔺		Settings 🔺

doo	csis		⇔eF Matrix	doo	csis		Matrix
38.20	00MHz QAM64	00	:07:11:05:D5:10	31.80	00MHz QAM64	00	:07:11:05:D5:10
0.0%	Codeword Errors 0	0.0%	MER / Unequalized 44.7 / 35.0 dB	0.0%	Codeword Errors 0	0.0%	MER / Unequalized 45.7 / 35.0 dB
0.0%	Carrier Level 12.9 dB	0.0%	Micro-reflection -41.3 dB	0.0%	Carrier Level 16.0 dB	0.0%	Micro-reflection -42.7 dB
0.0%	In-Band Response 0.3 dB/MHz	0.0%	Group Delay 30.6 ns/MHz	0.0%	In-Band Response 0.3 dB/MHz	0.0%	Group Delay 25.0 ns/MHz
0.0%	Ingress Under Carrier -57.5 dBc	0.0%	Impulse Noise 3.5	0.0%	Ingress Under Carrier -60.1 dBc	0.0%	Impulse Noise 4.1
•			• • • • • • • • • • • • • • • • • • •	(· ·
	Packet Histo	ory	Live		Packet Histo	ory	Live
< Back	View 🔺		Settings 🔺	< Back	View 🔺		Settings 🔺

do	csis		⊂≡F Matrix
	MHz	and	
0.0%	Codeword Errors 0	0.0%	MER / Unequalized 0.0 / 0.0
0.0%	Carrier Level 0.0	0.0%	Micro-reflection 0.0
	In-Band Recourse		Group Delay
•	19.000MHz / QAI 25.400MHz / QAI B1.800MHz / Q A 38.200MHz / QA 31.800MHz / QA	M64 / 6.4 M64 / 6.4 AM64 / 6 M64 / 6.4	00MHz 00MHz 5.400MHz 00MHz
ок	Cancel		

doo	csis		⊂≡ F Matrix
31.80	00MHz QAM64	00	:07:11:05:D5:10
0.0%	Codeword Errors 0	0.0%	MER / Unequalized 45.7 / 35.0 dB
0.0%	Carrier Level 16.0 dB	0.0%	Micro-reflection -42.7 dB
0.0%	In-Band Response 0.3 dB/MHz	0.0%	Group Delay 25.0 ns/MHz
0.0%	Ingress Under Carrier -60.1 dBc	0.0%	Impulse Noise 4.1
•			
2012	Packet Histo	ory	Live
< Back	View 🔺		Settings 🔺

51

do	csis		⇔eF Matrix	do	csis		⇔≡F Matrix	do	csis		⇔eF Matrix
38.20	00MHz QAM64	00	:07:11:05:D5:10	31.80	00MHz QAM64	00	:07:11:05:D5:10	25.40	00MHz QAM64	00	:07:11:05:D5:10
0.0%	Codeword Errors	0.0%	MER / Unequalized 44.7 / 35.0 dB	0.0%	Codeword Errors	0.0%	MER / Unequalized 45.7 / 35.0 dB	0.0%	Codeword Errors	0.0%	MER / Unequalized 46.9 / 35.0 dB
0.0%	Carrier Level 12.9 dB	0.0%	Micro-reflection -41.3 dB	0.0%	Carrier Level 16.0 dB	0.0%	Micro-reflection -42.7 dB	0.0%	Carrier Level 16.1 dB	0.0%	Micro-reflection -41.9 dB
0.0%	0.3 dB/MHz	0.0%	Group Delay 30.6 ns/MHz	0.0%	In-Band Response 0.3 dB/MHz	0.0%	Group Delay 25.0 ns/MHz	0.0%	In-Band Response 0.3 dB/MHz	0.0%	Group Delay 17.6 ns/MHz
0.0%	Ingress Under Carrier -57.5 dBc	0.0%	Impulse Noise 3.5	0.0%	Ingress Under Carrier -60.1 dBc	0.0%	Impulse Noise 4.1	0.0%	Ingress Under Carrier -61.6 dBc	0.0%	Impulse Noise 4.3
•			· · ·	•			• • •	•			· ·
	Packet Histo	ry	Live		Packet Hist	ory	Live		Packet Hist	ory	Live
< Back	View 🔺		Settings	< Back	View 🔺		Settings 🔺	< Back	View 🔺		Settings 🔺

do	csis		⊂i≡[]F Matrix
	MHz		
0.0%	Codeword Errors 0	0.0%	MER / Unequalized 0.0 / 0.0
0.0%	Carrier Level 0.0	0.0%	Micro-reflection 0.0
	In-Band Reconse		Group Delay
_	19.000MHz / QAI	464 / 6.4	00MHz
00 A	31.800MHz / QAI 38.200MHz / QAI	M64 / 6.4 M64 / 6.4	00MHz 00MHz
	25.400MHz / QA	M64 / 6.4	400MHz *
OK	Cancel		

doc		0.0	Matrix
0.0%	Codeword Errors	0.0%	MER / Unequalized 46.9 / 35.0 dB
0.0%	Carrier Level 16.1 dB	0.0%	Micro-reflection -41.9 dB
0.0%	0.3 dB/MHz	0.0%	Group Delay 17.6 ns/MHz
0.0%	Ingress Under Carrier -61.6 dBc	0.0%	Impulse Noise 4.3
•			
	Packet Histo	огу	Live
< Back	View 🔺		Settings 🔺

▶ do	csis		≁ ς⇔≡ Matrix
	MHz	111	
0.0%	Codeword Errors 0	0.0%	MER / Unequalized 0.0 / 0.0
0.0%	Carrier Level 0.0	0.0%	Micro-reflection 0.0
0	In-Rand Response		Group Delay
	19.000MHz / Q 25.400MHz / QAI 31.800MHz / QAI	AM64 / 6 M64 / 6.4	00MHz
	38.200MHz / QA	M64 / 6.4 M64 / 6.4	
ок	Cancel		

▶ docs	is		⇔eF Matrix				
19.000	MHz QAM64	00:07:11:05:D5:10					
95.5%	Codeword Errors 3	100.0%	MER / Unequalized 22.3 / 20.4 dB				
0.0%	Carrier Level 16.1 dB	100.0%	Micro-reflection -34.3 dB				
100.0%	In-Band Response 2.1 dB/MHz	100.0%	Group Delay 553.5 ns/MHz				
4.5%	ngress Under Carrier -34.2 dBc	4.5%	Impulse Noise 3.5				
•			•				
	Packet Histo	ory	Live				
< Back	View 🔺		Settings 🔺				

do	csis	⊂EF Matrix	do	csis	⇔∈F Matrix	do	csis	⊂⊂E[F Matrix	▶ docs	sis	⇔∈[]F Matrix
38.20	00MHz QAM64 00	0:07:11:05:D5:10	31.80	00MHz QAM64	00:07:11:05:D5:10	25.40	00MHz QAM64 (00:07:11:05:D5:10	19.000	MHz QAM64 00:	07:11:05:D5:10
0.0%	Codeword Errors 0.0%	MER / Unequalized 44.7 / 35.0 dB	0.0%	Codeword Errors 0.0%	MER / Unequalized 45.7 / 35.0 dB	0.0%	Codeword Errors 0 0.0%	MER / Unequalized 46.9 / 35.0 dB	95.5%	Codeword Errors 3 100.0%	MER / Unequalized 22.3 / 20.4 dB
0.0%	Carrier Level 12.9 dB 0.0%	Micro-reflection -41.3 dB	0.0%	Carrier Level 16.0 dB 0.0%	Micro-reflection	0.0%	Carrier Level 16.1 dB 0.0%	Micro-reflection -41.9 dB	0.0%	Carrier Level 16.1 dB 100.0%	Micro-reflection -34.3 dB
0.0%	0.3 dB/MHz 0.0%	Group Delay 30.6 ns/MHz	0.0%	0.3 dB/MHz 0.0%	6 Group Delay	0.0%	In-Band Response 0.3 dB/MHz 0.0%	Group Delay 17.6 ns/MHz	100.0 <mark>%</mark>	In-Band Response 2.1 dB/MHz 100.0%	Group Delay 553.5 ns/MHz
0.0%	Ingress Under Carrier -57.5 dBc 0.0%	Impulse Noise 3.5	0.0%	Ingress Under Carrier -60.1 dBc 0.0%	Impulse Noise	0.0%	Ingress Under Carrier -61.6 dBc 0.0%	Impulse Noise	4.5%	Ingress Under Carrier -34.2 dBc 4.5%	Impulse Noise 3.5
•		• •	۰.			۰.			4		•
	Packet History	Live		Packet History	Live		Packet History	Live		Packet History	Live
< Back	View 🔺	Settings 🔺	< Back	View 🔺	Settings 🔺	< Back	View 🔺	Settings 🔺	< Back	View 🔺	Settings 🔺

- Obviously there is an issue with the channel at 19 MHz
- Utilize this method to traverse the network and find the impairment causing this issue

Summary

- CMTS and SNMP data provide good troubleshooting
 - But not all of it
- DOCSIS 3.0
 - Significantly more throughput
 - Supports legacy D2.0 modems
 - D3.0 modems load balance in the upstream w/o loss of service
- Advanced test equipment is an investment that
 - Saves you time and money
 - Gets your subscribers back online and keeps them there
 - Makes you a predictable and reliable service provider
 - Seamlessly integrates headend & field 2 places / 1 person

The *Malpe* Firm

End Module 3 Questions?

