

Congestion Avoidance/Mitigation and Capacity Concerns

John J. Downey Sr. CMTS Technical Leader 4/23/2020

Agenda - Layers 1-7 of OSI Model

- Layer 1 Physical
- Layer 2 Data Link
 ✓ Ethernet Frames, Switching
- Layer 3 Network
 ✓ IP Packets, Routing
- Layer 4 Transport

 TCP/UDP
- Layers 5, 6 & 7 Session, Presentation & Application
- Layer 8 = COST!
- Note: Over 1 year of traffic growth in less than 1 month!
- <u>Play recording</u> password: 29mAcwPA

Top Seven Steps

Service Group (SG) = 1 Fiber Node (FN)

US Segmentation Physical Node Splits (2x2 RPD)

Verify No Uncorr FEC and "Clean" Plant

₿

Run Highest US and DS Modulation and Ch Widths

Utilize D3.1 as much as possible More spectrum allocation – maybe "steal" from video Utilize/exploit "Powerboost"; DS and US

Eliminate Overhead

Eliminate some primary DSs Less US chs per MAC domain (maybe more MAC domains) Remove "stale" service flows

Top Seven Steps (cont)

Control Abusers and DoS Attacks

Optimize CMTS Efficiency

Load balancing

D3.1 graceful profile management & US/DS resiliency/partial mode

Implement Cache Servers

Layer 1 – Physical Layer

Split Node	
Segment US	 BDR/EDR makes this easier May need to double mac domains for 1:2 architectures
Add More DOCSIS Channels	
Add/Increase D3.1	 Increase DS OFDM ch width & implement higher modulation Activate D3.1 US OFDMA
Distributed Access Architectures (DAA) Complement D3.1	 Digital fiber links improve US & DS RxMER No laser clipping!

(DS & US) Overhea

More Speed

Note: More speed does not mean less latency!

କ୍ତି

Use D3.1

D3.1 US may exhibit even more latency with ping tests Less Overhead

Decrease primary DSs & fewer USs/SG G

Trade Video QAMs for More Data Spectrum

Take Advantage of Powerboost Typical 10% overprovisioning done to negate differences between layer 2 & layer 3 speed reporting Peak-rate and Powerboost can be used to alleviate Name trademarked by Comcast

Utilize

peak-

rate TLV

CM

US Powerboost

Can exploit US Max Traffic Burst for US Powerboost

Capacity Overhead

•	256-QAM, Annex B raw rate = 42.88 Mbps	
• <u>1</u> L•	"Usable" refers to layer 2 speed reporting	"Primary" = 37.5 (I-CMTS) 36 Mbps (M-CMTS) 46 Mbps Annex A
	Each US in mac domain can decrease usable by ~.4 Mbps	Worse if no data traffic since all DS MPEG-2 encapsulated Note : D3.1 is not MPEG-2 encapsulated
~	Layer 3 reporting could be 5 - 10% less if average frame	es < 1518B
Ŷ	"Secondary-only" will be 37.5 Mbps (no DOCSIS overhe	ead)
	Multicast sent down each "Primary"	Can be removed with; cable downstream dsg disable on Integrated/Modular interfaces
÷	Per-CM speed is very different from aggregate speed	Many variables come into play, especially for US REQ/Grant cycle
₿	"Powerboost" and peak-rate TLV affect	

7

CMTS Suggestions

CMTS Global Config & General Suggestions

Throttle	Prioritize	Utilize
<pre>Throttle CM Ranging • [no] cable throttle- modem init-rate <1- 1000> holdoff-time <5- 100> flush-rate <100- 1000> • Suggested values; 32 CM/s; 45 sec; 300 CM/s • cab up rate-limit- bwreq exempted- priority <priority> • Sh cab throttle-modem</priority></pre>	<pre>Prioritize Pre- Registration Traffic • (config)#cable qos pre-registration us- priority [0-7] • DS - "cable service flow priority" (EDCS-1524683) • Note: Setting all BE flows > priority 0 can lead to issues</pre>	Utilize nRTPS for Call Signaling • Non-contention request guarantees call signaling during high congestion

CMTS Global Config & General Suggestions (cont)

"Stale" Service Flows

cab service flow activity-timeout 300

Add to CMTS global config so flows with no activity > 300 seconds are torn down if CM/eMTA does not do it automatically

DOCSIS 3.0 Voice Bearer Traffic Steering cab docsis30-voice downstream req-attr-mask 0 forbattr-mask 8000000 By default D3.0 DS VoIP is bonded & may cause DS latency or jitter Note: Some CPE exhibit low speed test if VoIP flow present at same time

Note: US voice traffic is never bonded (nor are other scheduled flows)

When adding faster service tiers be sure to delete old slower ones that are obsolete!

Warning: Slow to fast ratio cannot be more than 1:1000. If it is, the slower rate can constrain the faster rate!

Cable Interface Config Suggestions

Limit Primary DSs	• down Integrated-Cable 1/0/0 rf-ch 0 4	
Evenly Distribute US Bonded Traffic	• cab up balance-scheduling	
Re-acquire Layer 3 Faster after DS LB & Limit Contention Ranging for D3.0 CMs	•cab up ranging-init-technique 2	
Help CM Max Tx Issues	•cab up max-channel-power-offset 6 •cab up n power-adjust cont 6	
Provide Faster CM US Updates of Pre- EQ, Levels & MER	• cab up ranging-poll t4-multiplier 2	

Cable Interface Config Suggestions (cont)

Allow	 Allow VoIP Calls to Stay Online if CM Enters US Partial Mode cab upstream resiliency sf-move UGS (NRTPS & RTPS) 	
Allow	• Allow Fair Sharing of US Traffic Between D3.1 & 3.0 CMs • cable upstream qos fairness	
Activate	 Activate US Partial Mode Based on Data Burst MER Readings cab up resil data-burst snr 24 ufec 1 cfec 0 hyst 4 	
• Adjust CM Insertion Interval & CM Ranging Opportunities • cab insertion-interval auto 120 1000 or (60 48		
 Minimize US Collisions w/ Range & Data Back-off Changes cab up x range-backoff 3 6 cab up x data-backoff 3 5 		

Customer Examples

One Customer's Mitigation Plans

-	Add Extra 3.2 MHz, 64-QAM Ch	Adds ~13 Mbps
	Split MAC Domains	Cumbersome due to outside plant/node & hub cabling
Â	Convert 1 or 2 ATDMA to OFDMA	Could be issue with lack of D3.1 CPE
660	Implement Subscriber Traffic Management (STM)	Can track "heavy" users Potentially limit speed for everyone automatically during certain times

Adding D3.1 OFDMA US

Tested 3 SC-QAM US carriers with 14 MHz OFDMA

Placed OFDMA as high as possible in low-split

Tested larger carrier with exclusion for SC-QAMs

Found ch impacted due to poor performance of low spectrum and reduced ability to get 1K, 2K QAM Also tried two OFDMA carriers to allow low spectrum to change modulation independent of upper spectrum Decided that 14 MHz of continuous spectrum was best due to overhead of 2 chs and overall performance Also tested with 8-10 actives deep

Another Customer's Goals and Plans

Perform as few node splits as possible	
Deployed 96 MHz D3.1 DS OFDM and will add another 96 MHz in congested nodes	• Note: OK to ignore correctable codeword errors
Added OFDMA at bottom end of US spectrum	 With exclusion band for DSG
Considering 204 MHz split with analog or DAA	 Good luck with analog ☺
Considering DMIC to reduce theft of service	

Adding More US Channels

US Capacity Increase – Adding 5th US Ch

US Max Tx drops by 3 dB once you exceed 4 US chs in TCS

Note: Max Tx is based on modulation of first ch ranged

•
-
<u> </u>
•

Note: Bonding done at service flow level, could have some CMs reporting 5-ch TCS

4-ch BG for BE flow & single-ch BG for nRTPS or other flow in cm file

Assuming good amount of 8-ch US capable CMs, suggest 5-ch US BG and just 4-ch BG with 4 best US freqs (chs)

US Capacity Increase - Things to Keep in Mind

More USs in mac domain creates more DS map overhead Could run out of US SC-QAM resources

D3.1 TaFDM not advised because of inefficiencies

CMTS processes new CM TLVs (54-56) for US and DS spectrum capability

~.4 Mbps per US Moving to every 4th DS as Primary helps **Note**: Some CMs could have capability, but not report it and CMTS will not let it register on intended BG

CM US Freq Limit (cont)

Utilized DOCSIS RLBGs and key off US freq or MTC TLVs

Doesn't help with good CMs with in-house device that cuts off freq

Also requires lots of RLBG configs on every SG

Abandon SC-QAMs above expected freq cutoff & allocate for D3.1 OFDMA

Still potential issue for D3.1 CMs in house with external bad devices

Setting initial ranging (IR) for D3.1 OFDMA much high than expected freq cutoff may help it **not** range and relegate it to D3.0 lower US BG

• Not guaranteed since IR is BPSK!

85 MHz US - What Happens with **D2.0** CMs That Range on US > 42 MHz?

Best case; register on US freqs < 42 MHz

Next case; range on US > 42 MHz, but fail & then register on US freq < 42 MHz

Worst case; range on US freq > 42 MHz, have enough Tx power to overcome roll-off, pre-eq makes up for in-ch tilt and grp delay, but MER suffers

One fix would be DOCSIS Restricted LBGs to force them < 42 MHz

More work and complexity

Suggest 3-level dynamic modulation so US can automatically drop down if need be and go back when valid

Drop first US ch past 42 MHz may eliminate need for RLBGs

Make sure first ch above 42 is well above, like 58 MHz start freq

Gives enough spectrum for 4, 6.4 MHz chs for an 85 MHz system

85 MHz US - What Happens with **D3.0** CMs That Range on US > 42 MHz?

4-ch and 42 MHz filtered CMs can just go to partial mode, but that's not optimum either

Make sure first ch above 42 is well above, like 58 MHz start freq

See later slides - Ways to Avoid Issues with CM US Freq Limit

₿

Even D3.1 solution has some drawbacks in this situation because initial ranging(IR) is so robust at BPSK and fine ranging (FR) at QPSK that CM will register in 3.1 US mode with poor performance

New code will drop to partial mode based on uncorr FEC errors now

OSI Layer 1 - Physical

Power	Identify	Identify & fix
 Power – Black and Brown Outs Check outside plant standby power supplies If CPE have functional backup batteries, remotely check condition and backup functionality (if possible) 	 SC-QAM: Identify chs with pre-FEC and post- FEC errors Fix causes of post-FEC errors first, since they = packet loss Find/fix causes of pre- FEC errors, before becoming post-FEC errors 	OFDM: Identify & fix causes of uncorr codeword errors • Note: OK to ignore correctable codeword errors

OSI Layer 1 – Physical (cont)

Optimize HE/hub RF levels, outside plant active device adjustment

Optimize DS & US analog optical fiber link performance

May be able to achieve improved RxMER through optical links, which can lead to support for higher modulation orders

More short-term emphasis on leakage and ingress management

Improve signal quality on ingressimpacted channels

Ways to Avoid Issues with CM US Freq Limit

Low-split CMs on mid/high-split plant - global config may help:

cable us-freq-usecm-cap

Config is supported on 16.7 and 16.10 releases and disabled by default

 Uses CM capability TLV 5.20 to determine if CM supports standard US freq range or ext

Can view TLV 5.20 under scm verbose

sh cab modem <MAC> verbose | s US Frequency Range Capability

Note: Command above almost always says 5-85 MHz even when it can do higher or is setup to do lower

4800.33ef.3ebe doing 204 MHz but shows 5-85 MHz

14c0.3e0a.08fd doing 42 MHz but shows 5-85 MHz

cBR-8 does not let 14c0.3e0a.08fd on OFDMA which runs to 85 MHz so knows capabilities

Command "scm <mac> ver | i MHz" will show that info

Example of Customer US Spectrum Allocation

© 2020 Cisco and/or its affiliates. All rights reserved. Cisco Confidential

- More USs = more DS overhead Map traffic, especially if all DSs are primary!
- Wasted money since license is for ch regardless of modulation or ch width
- Use of cable upstream 0 rate-limit can make US appear erratic and not smooth
 - Suggest default cable upstream 0 rate-limit token bucket shaping
- Suggest +3 dBmV config for 6.4 MHz ch
 - ▶ MER same as 3.2 MHz chs
 - +3 for 1, 6.4 MHz chs is not much added total power when looking at 22.4 MHz of spectrum
 - Total power would be an increase of .67 dB
- Using middle freq will help with less cable attenuation and "cleaner" plant
- Aggregate speed is not much higher, but D3.0 US bonded speed is much more
 - 4-ch US bonding goes from 4*13 (52 Mbps total) to 3*13+27 = 66 Mbps
 - > 27% increase ((66-52)/52)

27

OSI Layer 2 – Data Link

	Ethernet Frames and Switching	
•1 1	Denial of Service (DoS)	Cloning – DMIC, BPI+, "Hotlist" Over Use/Abuse • Deep Packet Inspection (DPI) • Subscriber Traffic Management (STM) Arp Attacks, IGMP Joins? • Filters/Access Lists (ACLs), SBRL Expiring Certs • Allow/Deny Lists
₿	More Speed - Actual and Perceived (Powerboost)	D3.1 (DS & US) Less Overhead - Decrease Primary DSs, Fewer USs/SG Trade Video QAMs for More Data Spectrum
*	Note: More speed does not mean less latency!	D3.1 US may exhibit even more latency with ping tests

Disable Cable Modem Ranging / Registration

- Can stop specific CM from registering with hotlist command
- (config)#cab privacy hotlist ?
 Cm Add cm hotlist
 Manufacturer Add manufacturer hotlist
 - ✓ (config) #cab privacy hotlist cm ?
 H.H.H CM mac address H.H.H
 - ✓ (config) #cab privacy hotlist manufacturer ?
 LINE Certificate serial number
- ubr#show cable privacy hotlist cm

MAC Address	Last Ranged	Туре	Interface
0000.cadb.2f56	Dec 10 17:06:45	Permanent	C5/0/0
0019.47a0.6038	Dec 10 16:58:26	Permanent	C5/0/0

OSI Layer 3 - Network

((ւթւ)) • • • • •	Network	IP Packets Routing
	CPU	SUP Linecard
P	SNMP	
(îr	More Efficient Usage	Load Balance Resiliency/Partial Mode Encapsulation (WIFI, VPN)

Route Processor CPU

• S]	h Proc cpu	sorted	5sec e	x 0.0	108			
CPU ı	tilization f	or five se	conds: 16%/	4%; one	minute	: 13%;	five	e minutes: 12%
PID	Runtime(ms)	Invoked	uSecs	5Sec	1Min	5Min	TTY	Process
149	19869308	3436820	5781	4.15%	3.85%	3.85%		
8	529960	89389	5928	1.19%	0.15%	0.08%	0	Check heaps
91	109352	785150	139	0.87%	0.46%	0.12%	0	DHCPD Receive
52	617204	2730778	226	0.63%	0.49%	0.48%	0	Net Background
126	1804728	8159135	221	0.63%	0.39%	0.33%	0	CR10K Request di
134	3804712	616039	6176	0.63%	0.67%	0.67%	0	CR10K5 BCM84754
401	841576	8034391	104	0.47%	0.55%	0.52%	0	L2TP mgmt daemon
33	69472	203568	341	0.47%	0.13%	0.03%	0	ARP Input
139	905896	28229452	32	0.31%	0.24%	0.18%	0	C10K BPE IP Enqu
122	87156	191293	455	0.31%	0.23%	0.11%	0	CMTS SID mgmt ta
102	29500	1755589	16	0.15%	0.11%	0.10%	0	Fault Manager
202	104796	5155843	20	0.15%	0.11%	0.05%	0	IP Input
261	201244	624036	322	0.15%	0.11%	0.10%	0	c10k_periodic_st
343	442032	130862	3377	0.15%	0.09%	0.10%	0	DiagCard0/-1
201	48672	91222	533	0.07%	0.10%	0.03%	0	IP ARP Adjacency
105	59072	360437	163	0.07%	0.11%	0.10%	0	Environment Moni
101	59572	151075	394	0.07%	0.03%	0.02%	0	HC Counter Timer
249	40204	7507403	5	0.07%	0.05%	0.07%	0	DEPI Application
464	55576	1615671	34	0.07%	0.06%	0.02%	0	ReqXmt 7/1: defa
399	56536	756496	74	0.07%	0.10%	0.08%	0	CMTS ACFE Proces

Route Processor Memory

• Sl	n pi	rocesses	memory so	orted			
Proce	essor	Pool Total	L: 339011754	8 Used: 75	1121156 Free:	26389963	392
	I/C) Pool Total	L: 15938355	2 Used: 62	2036192 Free:	973473	360
Trans	sient	Pool Total	l: 1677721	6 Used:	30180 Free:	167470	036
PID	TTY	Allocated	Freed	Holding	Getbufs	Retbufs	Process
0	0	760830360	27206128	672439072	0	0	*Init*
128	0	110234512	986256	108885136	0	0	C10K SPUMONI SPA
122	0	32768076	46005896	3308964	0	0	CMTS SID mgmt ta
109	0	2589136	0	2596284	0	0	Dynamic Services
0	0	537102124	589493248	2437636	17463660	8504	*Dead*
126	0	2433801428	3674990568	2189772	0	0	CR10K Request di
193	0	4214988	2101072	2175064	0	0	TurboACL
139	0	221939668	0	1913036	0	0	C10K BPE IP Enqu
401	0	1857459388	1473683796	1841232	0	0	L2TP mgmt daemon
163	0	6844604	5007556	1816608	0	0	tENM
249	0	4243166060	329932572	1111396	0	0	DEPI Application
28	0	1113848	940	713584	0	0	IPC Seat Control
0	0	0	0	705312	0	0	*MallocLite*
201	0	1902088	1544888	590920	0	0	IP ARP Adjacency
39	0	650224	123800	533572	0	0	Entity MIB API
9	0	652284	1291868	506648	524232	726180	Pool Manager
403	0	126282500	126518952	500088	0	0	HCCP_LC_CTRL
345	0	489472	3744	471328	0	0	SEA main process
332	0	8329980	10927544	369296	0	0	CMTS Multicast Q
1	0	468508	1293972	358704	0	0	Chunk Manager
241	0	1101504	785128	329524	0	0	IP RIB Update

Linecard CPU

• Sl	n contr c7	7/1/0 prod	c-cpu so	rted	ex O	.00%		
CPU u	tilization f	for five sec	conds: 27%/	20%; one	e minut	e: 26%;	; fiv	ve minutes: 26%
PID	Runtime(ms)	Invoked	uSecs	5Sec	1Min	5Min	TTY	Process
16	13824104	271753	50870	2.55%	2.12%	2.04%	0	WBCMTS critical
181	7443208	318825	23345	1.19%	1.19%	1.18%	0	SNMP bg sync col
90	715652	272553	2625	0.79%	0.21%	0.50%	0	CMTS MAC Parser
64	4937492	770983	6404	0.79%	0.84%	0.84%	0	DOCSIS Load bala
143	784280	9031731	86	0.23%	0.17%	0.17%	0	IP Input
61	533944	214191	2492	0.23%	0.14%	0.11%	0	CMTS CM MONITOR
77	102584	3671944	27	0.23%	0.22%	0.23%	0	CMTS MAC Timer P
70	171924	350503	490	0.15%	0.08%	0.08%	0	CMTS CHAN STATS
196	442056	112250	3938	0.07%	0.07%	0.07%	0	Compute load avg
65	700052	2055111	340	0.07%	0.13%	0.16%	0	CR10K Request di
198	148408	2272590	65	0.07%	0.07%	0.07%	0	ReqXmt 5/1: defa
205	9448	570609	16	0.07%	0.06%	0.07%	0	HCCP_DATA_KA
• sl	n contr c8	3/0/0 pro	c-cpu so	rted	ex O	.00%		
CPU u	tilization d	for five sec	conds: 10%/	7%; one	minute	: 10%;	five	e minutes: 10%
PID	Runtime(ms)	Invoked	uSecs	5Sec	1Min	5Min	TTY	Process
184	5927116	217342	27270	0.95%	1.01%	1.01%	0	SNMP bg sync col
64	2741024	745642	3676	0.71%	0.70%	0.71%	0	DOCSIS Load bala
16	4265644	271864	15690	0.39%	0.47%	0.49%	0	WBCMTS critical
61	358108	114380	3130	0.15%	0.05%	0.05%	0	CMTS CM MONITOR
77	59508	3523622	16	0.07%	0.05%	0.07%	0	CMTS MAC Timer P
199	438176	108543	4036	0.07%	0.07%	0.07%	0	Compute load avg
70	219028	317086	690	0.07%	0.07%	0.07%	0	CMTS CHAN STATS
146	267164	4109077	65	0.07%	0.04%	0.05%	0	IP Input

Linecard Memory

• sh contr c8/0/0 memory

	Head	Total(b)	Used(b)	Free(b)	Lowest(b) L	argest(b)
Processor	C73EF00	1769738496	454869920	1314868576	1301932116	1299960636
I/O	75F00000	167772160	107608068	60164092	59910688	56092732

Processor memory

Address	Bytes	Prev	Next	Ref	PrevF	NextF	Alloc PC	what
0C73EF00	0000065540	00000000	0C74EF34	001			028542EC	MallocLite
0C74EF34	0000065540	0C73EF00	0C75EF68	000	285FEC2C	0	0294D170	(coalesced)
0C75EF68	0000065540	0C74EF34	OC76EF9C	001			024D2840	SID INST CHUNK
OC76EF9C	0000065540	0C75EF68	0C77EFD0	001			023B8BB0	CM MCTX CHUNK
OC77EFD0	000000356	0C76EF9C	0C77F164	001			023FFCD0	CM Flap Info
0C77F164	0000005764	OC77EFD0	0C780818	001			02751228	CMTS_PARSEINFO
OC780818	0000007204	0C77F164	0C78246C	000	287414DC	0	02751228	(fragment)
0C78246C	000000356	0C780818	0C782600	001			023FFCD0	CM Flap Info
0C782600	0001159332	0C78246C	0C89D6D4	000	28625354	C8A7BA0	02891078	(coalesced)
0C89D6D4	000000356	0C782600	0C89D868	001			023FFCD0	CM Flap Info
0C89D868	0000040972	0C89D6D4	0C8A78A4	000	0	0	02CE609C	(coalesced)
0C8A78A4	0000000716	0C89D868	0C8A7BA0	001			02F7B47C	CMTS MAC Parser
0C8A7BA0	0012280984	0C8A78A4	0D45E068	000	C782600	0	02891078	(coalesced)
0D45E068	0000020004	0C8A7BA0	0D462EBC	001			0223D8B4	Manage Chnk Q Elemen

© 2020 Cisco and/or its affiliates. All rights reserved. Cisco Confidential

34

SNMP & Security

- Change polling method to "get exact" wherever possible, for optimal performance •
 - ✓ Router(config)#Access-list 199 permit udp host xxx.xxx.xxx.any eq snmp
 - \succ One line for each device polling the box
 - ✓ You then create you class and policy maps:
 - ✓ Router(config)#class-map match-all snmp
 - Router(config-cmap)#match access-group 199
 - Router(config-cmap)#policy-map snmp
 - Router(config-pmap)#class snmp
 - ✓ Router(config)#police 56000 8000 10000 conform-action transmit exceed-action drop
 - ✓ Router(config)#interface GigabitEthernet1/0/0
 - Router(config-if)#service-policy input snmp
- Recommended ACLs for general security of cable access networks
- IP Unreachables/ICMP Unreachable Rate-Limiting: Blocks IP unreachables / prevents too many sequential ICMP unreachables from being sent when an outside node scan pings subnets and there are addresses that are not being used or users offline.
 - ✓ Router(config)#interface cable 5/0/0
 - ✓ Router(config-if)#no ip unreachables
 - Router(config)# ip icmp rate-limit unreachable 10000
- Cable ARP Filters: Helps control # of ARP replies and requests being transmitted on cable interfaces. Can be caused by bad devices as well as viruses and worms 35
 - ✓ Router(config)#interface c5/0/0

Deuterlashtis : flueshis and filter results and 2.2

1. Configure D2.0 Global Settings

- cab load-balance d20-ggrp-default method utilization
- cab load-balance d20-ggrp-default policy pure-ds-load
- cab load-balance d20-ggrp-default init-tech-list 4
- cab load-balance d20-ggrp-default interval 45
- cab load-balance d20-ggrp-default threshold load 15
- cab load-balance d20-ggrp-default docsis-policy 1
- cab load-balance docsis-enable
- cab load-balance modem max-failures 20
- cab load-balance method-utilization min-threshold 50
- cab load-balance method-utilization cm-hold 900
- cab load-balance rule 1 disable-throughput-lower us 100
- cab load-balance rule 2 disable-throughput-lower ds 500
- cab load-balance docsis-policy 1 rule 1
- cab load-balance docsis-policy 1 rule 2
D2.0 LB Step-by-Step Suggestions

- 2. Make proper RLBGs if necessary
- 3. Configure any "exclude" statements needed
- 4. Config load-interval 30 on all Cab, I, M, & W interfaces
- 5. Configure all fiber nodes
- 6. Use: cab load-balance d20 GLBG auto-generate ✓ Note: From exec mode, do wr mem afterward to save all LBGs
- 7. Reboot CMs if already online

Sh Cab load-balance docsis-group 800 all | in 36

DOCSIS load	d-balancin	g loa	ad						
Interface	S	tate	Grp	Utilization	Rsvd	NBCM	WB/UB	Flows	Weight
Mo8/0/0:0	(477 MHz)	up	1	10%(10%/92%)	08	3	9	3	36.0
Mo8/0/0:1	(483 MHz)	up	1	5%(5%/92%)	0%	2	9	2	36.0
Mo8/0/0:10	(537 MHz)	up	1	0응(0응/92응)	08	2	10	3	36.0
Mo8/0/0:11	(543 MHz)	up	1	0%(0%/92%)	0%	2	10	2	36.0
Mo8/0/0:12	(549 MHz)	up	1	0응(0응/92응)	08	2	10	2	36.0
Mo8/0/0:13	(555 MHz)	up	1	5%(5%/92%)	0%	2	10	2	36.0
Mo8/0/0:14	(561 MHz)	up	1	0응(0응/92응)	08	2	10	2	36.0
Mo8/0/0:15	(567 MHz)	up	1	10%(10%/92%)	0%	2	10	4	36.0
Mo8/0/0:2	(489 MHz)	up	1	10%(10%/92%)	08	2	9	2	36.0
Mo8/0/0:3	(495 MHz)	up	1	5%(5%/92%)	0%	2	9	2	36.0
Mo8/0/0:4	(501 MHz)	up	1	10%(10%/92%)	0%	2	9	2	36.0
Mo8/0/0:5	(507 MHz)	up	1	5%(5%/92%)	0%	2	9	2	36.0
Mo8/0/0:6	(513 MHz)	up	1	0응(0응/92응)	0%	2	9	2	36.0
Mo8/0/0:7	(519 MHz)	up	1	5%(5%/92%)	0%	2	9	2	36.0
Mo8/0/0:8	(525 MHz)	up	1	0%(0%/92%)	0%	2	10	2	36.0
Mo8/0/0:9	(531 MHz)	up	1	0%(0%/92%)	0%	1	10	2	36.0

• Utilization based on "load-interval" with default of 300 sec and suggested lowest setting of 30

• Cable interface setting affects US utilization; Modular/Integrated affects DS utilization

• Policy pure-ds-load recommended when doing DS utilization LB

• Removes US utilization for DS LB decisions

1. Configure D3.0 Global Settings

- cable load-balance d30-ggrp-default policy pure-ds-load
- cable load-balance d30-ggrp-default init-tech-list 4
- cable load-balance d30-ggrp-default threshold load 20
- cable load-balance d30-ggrp-default interval 30
- cable load-balance d30-ggrp-default docsis-policy 1
- cable load-balance docsis-enable
- cable load-balance docsis30-enable
- cab load-balance modem max-failures 20
- cab load-balance method-utilization min-threshold 50
- cable load-balance method-utilization cm-hold 900
- cab load-balance rule 1 disable-throughput-lower us 100
- cab load-balance rule 2 disable-throughput-lower ds 500
- cab load-balance docsis-policy 1 rule 1
- cab load-balance docsis-policy 1 rule 2

D3.0 LB Step-by-Step Suggestions

- 2. Make proper RLBGs & "exclude" commands if necessary
- 3. Config load-interval 30 on all Cable, I, M, & W interfaces
- 4. Configure cable interface commands
 - ✓ cable upstream balance-scheduling
 - ✓ cable up ranging-init-technique 2
- 5. Configure all fiber nodes
- 6. Reboot CMs if already online
 - ✓ Wait for modem-count LB and primary distribution
- 7. Configure;
 - ✓ cab load-balance d30-ggrp-default method util
 - ✓ cab load-balance docsis30-enable dynamic down
 - ✓ Rebuild all FNs or change all auto-generated D3.0 LBGs to method utilization
- 8. Reboot CMs if already online (may not be needed)

D3.0 Modems Registered in D2.0 Mode

10k#show cable modem wideband registered-traditional-docsis									
MAC Address	IP Address	I/F	MAC	Prim	RCC	MD-DS-SG/			
			State	Sid	ID	MD-US-SG			
1859.3353.0b18	10.10.0.29	C7/1/1/U0	online(pt)	1270 1	1	/ 1			
1859.3353.09b0	10.10.0.18	C7/1/1/U1	online(pt)	1253 1	1	/ 1			
1859.3353.0adc	10.10.0.21	C7/1/1/U3	online(pt)	1255 1	1	/ 1			
1859.3353.0ad6	10.10.0.28	C7/1/1/U2	online(pt)	1245 1	1	/ 1			

- D3.0 CMs "online" are basically in D2.0/single-ch mode
- May not complain because CM is online, but QoS will suffer
- CMs will participate in D2.0 LB
 - Can wreak havoc on load balance
- CMs with high level QoS will "eat" limited capacity and potentially "starve out" legitimate D2.0 CMs
- Note: CMs could be w-online but D2.0 on US
 - Lose mtc-mode CCF, but gain US LB

Partial Mode & Wideband CM Distribution

- Scm partial-mode
- Scm partial-service
- Scm cm-status
- Show cable resiliency
- Show cable modem resiliency
- Scm wide ch
- Show cable mac-domain cx/y/z rcc
- Scm <mac> wide rcs ver

DS Partial Mode

- "Trigger" command needed to even process cm-status messages
 - cab rf-change-trigger percent 50 count 10 secondary
 - This was first attempt at resiliency very limited in that CMs in p-online were either sending all their traffic down their primary or forcing everyone to go to less DSs once thresholds were met
 - All CMs in p-online leading up to threshold will still be sending their traffic down their primary and only CMs after threshold will actually do subset
 - CMs can come out of p-online automatically when a cm-status message reports "good" and can go back to w-online without intervention
 - Plus, it is easier to track CMs listed as p-online
- 10k(config-if)#cab cm-status enable ?
 - <grouplist> CM-STATUS event list to enable
 - 3 Sequence out of range
 - 6 T4 timeout
 - 7 T3 re-tries exceeded
 - 8 Successful ranging after T3 re-tries exceeded
 - 9 CM operating on battery backup
 - 10 CM returned to A/C power
 - Only 3 is on by default depending on IOS

Resilient Bonding Groups (RBGs)

- Feature was added in SCG IOS and works in conjunction with "trigger" command
 - Much more flexible
 - Recommend higher threshold for "trigger" command
 - Need to keep eye on CMs "thrashing" and CPU affect
- (config)#cable resiliency ds-bonding
- (config)#interface wideband-cable x/y/z:a
 - (config-if)#cable ds-resiliency
- Note: Without "trigger or RBG, CMs should cycle on and off when cm-status bad
 - DDTS CSCur93878
 - Potential work-around no cable cm-status enable 3
- Once CM picks BG, RBG will not intervene and place it in bigger BG later
 - BGs must be created properly manually and CM should pick biggest it can handle assuming steered properly, if need be
 - When CM locks on primary DS, CM only "sees" BGs that primary is part of

DS Resiliency and Partial Mode

- (config)#cab rf-change-trig percent 75 count 10 second
- (config)#cab cm-status all holdoff 500 reports 5
- (config)#cab rf-change-dampen-time 60
- (config) #cab acfe enable
- (config)#cab acfe period 60
- (config)#cab acfe guar-bw-sync-period 240
- (config) #cab resiliency ds-bonding
- Configure 4-6 RBGs per controller (more if battery mode used)

 (config) #interface wideband-cable x/y/z:63
 (config-if) #cable ds-resiliency

US Partial Mode

- On by default
- Much easier for CMTS to control on US vs DS
 - CMTS schedules minislots and can mark per-CM US up or down
- scm 1859.334e.82c4 ver

MAC Address :	1859.334e.8	32c4					
IP Address :	: 10.10.0.210						
Prim Sid :	62						
Host Interface :	C7/1/4/UB						
MD-DS-SG / MD-US-SG :	1 / 1						
Primary Wideband Channel ID :	: 2726 (Wi7/1/1:5)						
Primary Downstream :	: Mo7/1/1:10 (RfId : 2050)						
Wideband Capable :	Y						
UDC Enabled :	N						
Extended Upstream Transmit Power :	0dB						
Multi-Transmit Channel Mode :	Y						
Number of US in UBG :	4						
Upstream Channel :	US0	US1	US2	US3			
Ranging Status :							
Upstream SNR (dB) :	39.7	39.8	39.3	37.89			
Upstream Data SNR (dB) :							
Received Power (dBmV) :	0.00	0.00	0.00	-0.50			
Reported Transmit Power (dBmV) :	32.00	32.00	32.00	32.00			
Peak Transmitt "Poweright (dBmV) isco Confidential :	51.00	51.00	51.00	51.00			

SCM Partial-Mode & Service

• 10k#show cable modem partial-mode I/F MAC Address IP Address MAC Prim RCC UP-reason/ State Sid TD Failed-tcs 1859.3353.0b3e 10.10.1.169 C7/1/6/UB p-online(pt) 72 2 N/A 38c8.5cb6.63ca 10.10.1.255 C7/1/6/UB p-online(pt) 78 2 N/A 1859.3353.0a18 10.10.0.228 C7/1/7/UB p-online(pt) 2 1 N/A 1859.3353.09c2 10.10.0.219 C7/1/7/UB p-online(pt) 5 1 N/A • 10k#show cable modem partial-service MAC Address TP Address T/F MAC DSxUS Impaired Impaired State State DS US C7/1/0/p p-online(pt) 3x1 Mo1/3/0:1 54d4.6ffb.2e1b 40.4.58.23 0,1 Mo1/3/0:2 1859.3353.0b3e 10.10.1.169 C7/1/6/UB p-online(pt) 4x4 7/1/2:16 7/1/2:17 7/1/2:18 7/1/2:19 1859.3353.0a18 10.10.0.228 C7/1/7/UB p-online(pt) 7x3 7/1/2:12 • 10k#show cable modem 38c8.5cb6.63ca primary-channel MAC Address TP Address Host. MAC Prim Num Primary DS Interface State Sid CPE Downstream RfId 38c8.5cb6.63ca 10.10.1.255 C7/1/6/UB p-online(pt) 78 0 Mo7/1/2:7 2071

SCM "mac" Wide RCS-Status

• 10k#scm 38c8.5cb6.63ca wide rcs-status

		RF : 7/1/2 16	
CM : 38c8.5cb6.63ca		Status	: DOWN
RF : 7/1/2 4 Status FEC/QAM Failure Dup FEC/QAM Failure FEC/QAM Recovery Dup FEC/QAM Recovery MDD Failure Dup MDD Failure MDD Recovery Dup MDD Recovery	: UP : O : O : O : O : O : O : O : O	FEC/QAM Failure Dup FEC/QAM Failure FEC/QAM Recovery Dup FEC/QAM Recovery MDD Failure Dup MDD Failure MDD Recovery Dup MDD Recovery Flaps Flap Duration BF • 7/1/2 17	: 1 Mar 25 18:37:15 : 0 : 0 : 0 : 0 : 0 : 0 : 0 : 0 : 1 : 12:40
Flaps Flap Duration	: 0 : 00:00	Status FEC/OAM Failure	: DOWN : 1 Mar 25 18:37:15
RF : 7/1/2 5 Status Flap Duration	: UP • 00•00	Flaps Flap Duration RF : 7/1/2 18	: 1 : 12:40
RF : 7/1/2 6 Status	: UP	Status FEC/QAM Failure Flaps	: DOWN : 1 Mar 25 18:37:15 : 1
Flap Duration	: 00:00 e: Primarv DS not	Flap Duration RF : 7/1/2 19 Status	: 12:40 : DOWN
	shown	FEC/QAM Failure	: 1 Mar 25 18:37:15

Flaps

Flap Duration

© 2020 Cisco and/or its affiliates. All rights reserved. Cisco Confidential

48

: 1

: 12:40

Verify Bonded Service Flows

- CMTS bonds the service flow, not modem
- CM can report 8x4 when doing scm wide ch command, but that is the physical chs it is using, not necessarily actual bonding taking place
 - Need to look at service flow ver to verify if BE flow is doing full ch bonding or you have 2 flows using 2, 4-ch BGs
- 10k#sh cab modem 1855.0ff0.17bd wide ch
 - MAC Address IP Address I/F MAC DSxUS Primary
 - State WB
 - 1855.0ff0.17bd 10.10.2.11 C8/0/0/UB w-online(pt) 16x4 Wi8/0/0:0
- 10k#sh cab modem 1855.0ff0.17bd service-flow ver | in Forward
 - Forwarding interface: Wideband-Cable8/0/0:0
- 10k#sh cab modem 1855.0ff0.17bd service-flow ver | in Bonding
 - Upstream Bonding Group : UBG-800

Show Cable Upstream Service-Flow Summary

Interface			Static	Upstr	eam Serv	ice Fl	OW	Dyna	mic Up	ostream	Servic	e Flow	Descrip
	Total	PRI	BE	UGS	UGS-AD	RTPS	N-RTPS	S BE	UGS	UGS-AD	RTPS	N-RTPS	
C6/0/0/ <mark>UB1</mark>	17	17	0	0	0	17	0	0	0	0	0	0	Cell-1
C6/0/0/UB2	17	17	0	0	0	17	0	0	0	0	0	0	Cell-2
C6/0/0/U0	8	4	4	0	0	4	0	0	0	0	0	0	N/A
C7/1/1/U0	7	7	7	0	0	0	0	0	0	0	0	0	
C7/1/1/U1	7	7	7	0	0	0	0	0	0	0	0	0	
C7/1/1/U2	8	8	7	0	0	0	0	0	0	0	0	0	
C7/1/1/U3	7	7	7	0	0	0	0	0	0	0	0	0	
C7/1/1/ <mark>UB0</mark>	1	1	1	0	0	0	0	0	0	0	0	0	
C7/1/4/U0	8	8	8	0	0	0	0	0	0	0	0	0	
C7/1/4/U1	8	8	8	0	0	0	0	0	0	0	0	0	
C7/1/4/U2	8	8	8	0	0	0	0	0	0	0	0	0	
C7/1/4/U3	8	8	8	0	0	0	0	0	0	0	0	0	
C7/1/4/UB714	16	16	16	0	0	0	0	0	0	0	0	0	
C7/1/6/U0	15	15	15	0	0	0	0	0	0	0	0	0	
C7/1/6/U1	15	15	15	0	0	0	0	0	0	0	0	0	
C7/1/6/U2	17	17	17	0	0	0	0	0	0	0	0	0	
C7/1/6/U3	17	17	17	0	0	0	0	0	0	0	0	0	
C7/1/6/UB716	2	2	2	0	0	0	0	0	0	0	0	0	
C7/1/7/U0	10	10	10	0	0	0	0	0	0	0	0	0	
C7/1/7/U1	11	11	11	0	0	0	0	0	0	0	0	0	
C7/1/7/U2	11	11	11	0	0	0	0	0	0	0	0	0	
C7/1/7/UB717	16	16	16	0	0	0	0	0	0	0	0	0	
C8/0/0/U0	7	7	7	0	0	0	0	0	0	0	0	0	
C8/0/0/U1	8	8	8	0	0	0	0	0	0	0	0	0	
C8/0/0/U2	8	8	8	0	0	0	0	0	0	0	0	0	
C8/0/0/U3	9	9	8	0	0	0	0	0	0	0	0	0	
C8/0/0/0/08800 ^{nd/}	or its af filiates. A	ll ri <u>≇</u> h † s res	erved 1 9sco Co	onfidential	0	0	0	0	0	0	0	0	
Total:	305	305	303	0	0	0	0	0	0	0	0	0	

Show Cable Modem TCS Summary

Interface			Cable	e Moder	n			
	Total	Reg	Oper	Unreg	Offline	Wideband	TCS	USCB
C5/0/0/U0-1	32	32	32	0	0	32	768	1
C5/0/0/U2-3	94	94	94	0	0	94	3072	2
C5/0/0/U4-5	32	32	32	0	0	32	12288	3
C5/0/0/ <mark>U6-7</mark>	50	50	50	0	0	50	49152	4
C7/1/1/U0.0,1.0,2.0,3.0	16	16	16	0	0	16	3840	711
C7/1/1/U0.0	7	7	7	0	0	0		
C7/1/1/U0.1	1	1	1	0	0	0		
C7/1/1/U1.0	7	7	7	0	0	0		
C7/1/1/U2.0	7	7	7	0	0	0		
C7/1/1/U3.0	8	7	7	1	1	0		
C7/1/7/U0-2	16	16	16	0	0	16	1792	717
C7/1/7/U0	10	10	10	0	0	0		
C7/1/7/U1	11	11	11	0	0	0		
C7/1/7/U2	11	11	11	0	0	0		
C8/0/0/U0-3	17	17	17	0	0	17	3840	800
C8/0/0/U0	7	7	7	0	0	0		
C8/0/0/U1	8	8	8	0	0	0		
C8/0/0/U2	8	8	8	0	0	0		
C8/0/0/U3	9	8	8	1	0	0		
Total:	321	313	313	8	2	67		

SID Depletion

CMTS has 8175 SIDs per mac domain

Every US service flow uses a separate unique SID

Assuming an average of 2.3 SIDs per CM

Some are dynamic flows & others nailed up for signaling & BE That could be limited to ~3500 CMs per service group

D3.0 US bonding can use same SID, but sid cluster setting may allow more

_
<u> </u>
•

In worst case scenario; 8 USs in mac domain, utilizing DSG for settop boxes with typical 2 STBs & 1 D3/3.1 CM per house with stale service flows & SID Cluster 2

SID exhaustion could be realized **Note**: We have a customer today with 2300 devices using 7200 SIDs

CMTS Utilization Display

```
cbr8#sh int c1/0/2 mac-scheduler

DOCSIS 1.1 MAC scheduler for Cable1/0/2/U0 : rate 30720000

wfq:None

us_balance:ON

dps:OFF

fairness:OFF

Adv Phy Short Grant Slots 155176, Adv Phy Long Grant Slots 6038475

Adv Phy UGS Grant Slots 0

Avg upstream channel utilization(%data grants) : 1%

Avg upstream channel utilization in 30 sec : 0%

Avg percent contention slots : 98%

Avg percent initial ranging slots : 1%
```

- Contention percent is (99 current data %), which means; what is available for contention, not current percentage of contention
- Contention % & Data % should add up to 99%
 - Have seen in past with Rate-Adapt (not available on cBR-8) and maybe with DPS (not officially supported yet) where this did not occur
 - Note: Got around misreporting of Data % when Rate-Adapt was activated by taking current bps and dividing by estimated "usable" bandwidth for A-Long IUC
- Side Note: Some people call this user bandwidth vs channel bandwidth
 - Actual traffic rate in percentage form vs ch usage based on time allocation (minislots)

Device Count	
One original suggestion was no more than 150 to 200 CMs per US	 If doing VoIP, you may want to cut this in half However, advances in DOCSIS Phy technology may allow greater US aggregated bandwidth allowing more CMs per US than currently recommended Devices such as a digital settops requiring low bandwidth may also be installed and allow more devices to be installed
We also suggested keeping total devices under 1500 per mac domain (cable interface) because of SID space and ranging concerns	• Note: Recently modified since we have many Primary DSs per SG
Historically, we had ranging (station maintenance (SM)) at every 20 sec and T4 timer in CM is 30 sec; This only gave 10 sec as worst case scenario for linecard failovers	 After seeing issues in field, we changed SM from every 20 sec to every 15 sec when linecard HA configured Gives 15 sec worst case coverage, but creates more SM on DS; but not much traffic to worry about Side Note: CMs with ! on US Rx level as seen on CMTS are at max TX power and can create fast polling and much more SM messages, which is why I suggest no more than 5% with ! (max Tx)

Utilization Tracking

SNMP polling interval for calculating RF ch utilization

- (config)#cab utilinterval ?
 - <1-86400> The time
 interval in seconds (300
 default)

CMTS MIB to monitor DS usage

- CISCO-CABLE-WIDEBAND-MIB > ccwbRFChannelTable > ccwbRFChannelUtilization
- Reports average DS utilization across xx secs of "load-interval"
- Default of 300, but recommend 30 sec
- Remember, no minislots in DS
- For M-CMTS solution with Annex B, 6 MHz ch width using 256-qam, use 36 Mbps as usable rate to figure out what to divide by
- When using this MIB, configure "cab utilinterval <n>" value to same value or lower before actual snmp polling interval
- Ex. If snmp polling set to 10 min, can use 9 or 10 for cab util-interval value
- Setting cab util-interval cmd updates interval for ccwbRFChanUtilInterval

Use CMTS MIB to monitor US usage:

- Can use cdxlfUpChannelAvgUtil to monitor avg US channel utilization
- May need to monitor minislot utilization instead since US BW could be available, but no available minislots to send
- cdxlfUpChannelAvgContSlots
- BW utilization is typically in Mbps, so divide by:
- 9 Mbps for 16-qam, 3.2 MHz
- 27 Mbps for 64-qam, 6.4 MHz

Utilization Tracking (cont)

Other similar MIB to monitor DS/US usage	 Use docsIfCmtsChannelUtUtilization to monitor avg US/DS ch utilization US utilization percent reports minislots utilized on physical ch DS utilization percent reports percent of ratio between bytes data transmitted vs total number of bytes transmitted in raw BW of mpeg ch Setting cabl util-interval <n> will update utilization interval for docsIfCmtsChannelUtilizationInterval</n>
In SCF and later, MIB ccwbRFChannelUtilization used for polling RF DS ch utilization for 3Gx60, 20x20V, 8x8V, 3G SPA & WB SPA	 Use ccwbFiberNodeTable to query cable interfaces and RF ch snmp if index
In SCE and later, MIB docsIfCmtsChannelUtUtilization can be used for polling legacy linecards; 5x20, 20x20, WB SPA for RF ch utilization	 MIB ccwbFiberNodeNBIfIndex pointed to DS or US ch of cable interface or integrated/modular cable snmp if index

Battery Mode (BM) Introduction

Bonding downgraded to one DS by one US ch

Battery 1x1 mode (BM)

Reduces power usage when CM running on battery

Longer backup for VoIP and low traffic

When CM returns to AC power mode, ch bonding returns to original configuration

Battery 1x1 Mode Feature Description

CM use CM-STATUS to report event 9 "CM on battery backup" and event 10 "CM returned to AC power" to CMTS Single-ch US BG & 1-ch DS grp needed to move CM to 1x1

For US, each US ch has default single-ch BG For DS, RBGs need to be configured X

Feature uses DBC to move

CM from original BG to 1x1

CMTS uses saved info to restore CM to original BG when power restored

Energy Management Feature Description

 Low power mode referred to as "Energy Management 1x1 Mode" CM must support feature & be enabled in cm file along with user-configurable thresholds CMTS uses DBC to instruct CM to enter/exit Energy Management 1x1 Mode EM feature uses Resilient BGs for DS and default single-ch US BGs for US CMTS selects one available US BG which has max BW available 	 CM instructed by CMTS via DBC to switch to RCS containing single DS ch & TCS containing single US ch to operate in EM 1x1 Mode during "idle" times Data rate demand of that user can be satisfied by available capacity on single US and DS ch pair it is assigned 	When CM requires higher data rate, CMTS instructs CM to return to original RCS/TCS set
When CM enters EM mode, CMTS saves original wideband interface and US TCS	When CM exits EM mode, it returns to original wideband interface and US ch sets	Note : Battery Backup 1x1 Mode is independent, more simplified feature from EM mode & requires cm-status messages 9 & 10 to be processed

Show Controller Output

• cBR8	3#sh cc	ntr integ	grated-Ca	ble 2/0/	'0 counter	rf-channel	L
Control	l rf	MPEG	MPEG	MPEG	Sync	MAP/UCD	User
	Chan	Packets	bps	Mbps	Packets	Packets	Mbps
		Tx			Tx	Τx	
2/0/0	0	112337733	07 388096	57 38.80	43539665	1743367624	35.68
2/0/0	1	112335562	86 388096	38.80	0	217697	37.81
• • • • • •							
2/0/0	7	112335562	82 388096	67 38.80	0	217697	37.81
2/0/0	8	112337730	68 388096	38.80	43539665	1742875987	35.68
2/0/0	9	112335562	95 388096	57 38.80	0	217696	37.81
2/0/0	10	112335562	91 388096	38.80	0	217697	37.81
• • • • •							
2/0/0	31	112335562	99 388096	38.80	0	217697	37.80
• cBR8	3-CPoC#	sh contr	integrat	ed-Cable	e 2/0/0 cou	unter ofdm-	-ch
Contro	Ch# Pro	ofile/PLC	Packets	Bytes	Rate(Mbps)	Utilization	n(%)
2/0/0	158 Tot	tal	5443178	82278447	1512.226	100.0	
2/0/0	158 0		4571485	31129641	0.005720	0.0	
2/0/0	158 1		5441574	82273356	1512.133	100.0	
2/0/0	158 2		2222428	91837370	0.001600	0.0	
2/0/0	158 PL(C-MMM	6530949	58560842	0.010761		
2/0/0	158 PL(C-EM	0	0	0.000000		
2/0/0	158 PL(C-TR	0	0	0.00000		

Controller Upstream-Cable 1/0/0

- us-channel 0 frequency 16000000
- us-channel 0 channel-width 6400000 6400000
- us-channel 0 threshold snr-profiles 24 19
- us-channel 0 threshold corr-fec 0
- us-channel 0 threshold hysteresis 4
- us-channel 0 docsis-mode atdma
- us-channel 0 minislot-size 2
- us-channel 0 modulation-prof 224 223 222
- us-channel 0 equalization-coefficient
- no us-channel 0 shutdown
- Note: upstream channels 1 2 & 3 at 22500000, 29000000, 35500000

Going Forward

OSI Layer 4-7 Considerations

Strategic Usage of Cache Servers

TCP/UDP

Ack Suppression

TCP Windowing

Note: Over-the-Top (OTT) video uses adaptive bit rate (ABR) and is TCP-based

Netflix, YouTube, etc. may eliminate 4K video & also drop quality encoding 25% to save BW

Miscellaneous

CableLabs' Guidelines for In-Home WIFI Performance

 <u>https://www.cablelabs.com/tips-to-improve-your-home-wi-fi-performance?utm_campaign=TL%20%7C%20Inform%5BED%5D%20Blog</u> &utm_source=hs_email&utm_medium=email&utm_content=85664616&
 <u>hsenc=p2ANqtz--</u> DQiVygwYckmbJuuXdqZKVZgaQV_ndqdVdvHxSyOU6QLtqNYfGErgOSez4m sJ_4h_UgMTCdw27Jfy69n8jWV4Uk6Z2bQ&_hsmi=85664616

Ask subscribers to check tightness of F connectors on CPE and tighten if loose

- Avoids tech needing to go inside house
- Been found to improve/resolve some US noise/ingress issues

Going Forward & Planning for Next Inevitable Event

	U,

Implement subscriber-based subscription model

For quick activation of more channels/capacity

Have segmentable nodes

Future segmentation for quick activation

Better performance and complementary to D3.1

Laser Clipping Theory

High US Utilization, Types of Applications, & Laser Clipping

More US utilization (Ring doorbell, gaming,...) coupled with applications not using UGS like Vonage, Skype, Zoom and other BE VoIP will increase probability of Request collisions

Suspect customers with audio-only will have more contention requests vs piggyback requests

Video calls would increase US throughput requirements and piggybacking would probably occur more often

DS OTT video and its TCP acks that must be sent on US could be exacerbating the issue

These collisions could lead to laser clipping and dropped packets

Note: Laser clipping would not occur on digital fiber links in distributed access architectures (DAA) like remote-PHY

Verifying BW Request Counters

Following commands used to verify BW requests (contention or piggybacked)

• Cannot tell when contention requests actually contend/collide

cbr8#sh int cx/y/z sid n count ver | inc BW

- BWReqs {Cont, Pigg, RPoll, Other} : 8306, 3243, 0, 0
- Note: Could use this command to test theory of which applications create more contention Reqs
- Intended for specific CM

cbr8#sh contr cx/y/z up n | in Request|Bytes

- Bandwidth Requests = 2776290
- Piggyback Requests = 1077964
- Invalid BW Requests= 195 (more info in notes view)
- Bytes Requested = 256264277
- Bytes Granted = 1626995783
- Command to show per-US counters

Example

500 homes in SG/FN

10% doing some sort of teleconferencing

40% of them are doing audio-only

- Half of them actually have collisions
- Gives 500*.1*.4*.5 = 10 potential Req collisions

10*log(10) = 10 dB potential power spike

Note: To add power perfectly, signals need to be same freq, amplitude & phase

At US laser input, signals will be same freq and power, but phase is based on timing/distance CMs have time offsets to keep tight timing alignment, so phase should be aligned as well

Laser Clipping Traits

"See" artifacts like second and third order harmonics above diplex filter region

One way to prove signal is an artifact is to turn off original "real" signal or watch spectrogram view, which is time in Z axis

See if artifacts disappear same time signal below 42 MHz disappears or fluctuates

Sometime DS signal leaks on US, so it's actually ingress and not harmonics

Look below 5 MHz and make sure AM or HAM radio not getting into node

Have seen in past where node used special port for power insertion and it wasn't as good as we thought for RF choking

Installed power inserter on RF leg and issue solved

CM Ranging Causing Power Spikes

CM on low value tap will normally only need to transmit maybe 35 dBmV and if it ranges it could go as high as 57 dBmV

HE test CMs notorious for this if no proper attenuation added

Utilizing flexible solution taps (FST) with built-in EQs helps alleviate this since CMs all Tx between 40-50 dBmV and will not have large range to ramp up

Note : Concern about CMs in "hotlist" as they will still range	Never show init(r1), but ramping up on every UCD and trying all day long Could be better to let them register & give them cm file with network access disabled
Stick with double minislot from default like we suggest and never quadruple it	If so, more time on wire wasted
	Dropping it to default minislot of 1 when using 6.4 MHz ch width will not save us anything and could affect US concatenation and per-CM US speed

Contention Requests and Laser Clipping

	for contention % is amount avai	Should be 99-utilization %	
₿	If Cont and Utilization % don't add up to 99%, then it's a problem		
	Monitor Cont Requests	If low, make sure util + cont = 99% If it doesn't add up, then track specific CMs and figure out why If low and does add up properly, then not much you can do since heavy US traffic is "real"	
冥	Work-around to laser clipping	 Install RPD ^(c) – Digital optical link has no laser clipping Decrease levels into laser by 3-6 dB with expected lower MER! Pad movement from HE to node CMTS config change (-3 to -6 dBmV vs default of 0) Pad and CMTS change (3 dB pad movement from HE to node and -3 dBmV on CMTS) 	
References

References – Internal BNE Web Page

- <u>http://stugots.cisco.com/SystemTest/BNE-Library.shtml</u>
- <u>http://stugots.cisco.com/rr/BNE-KnowledgeBase/Misc_PPTs/CBR-8_Lessons_Learned_7-28-16.pptx</u>
- <u>http://stugots.cisco.com/rr/BNE-KnowledgeBase/Misc_PPTs/CMTS_&_CM_Impairment_Mitigation_Technigues_2-28-18.pptx</u>
- <u>http://stugots.cisco.com/rr/BNE-KnowledgeBase/Misc_PPTs/CMTS_&_RF_Troubleshooting_10-19-16.pptx</u>
- <u>http://stugots.cisco.com/rr/BNE-KnowledgeBase/Misc_PPTs/CMTS_Operation_Monitoring_11-18-16.pptx</u>
- <u>http://stugots.cisco.com/rr/BNE-KnowledgeBase/D3%230__DS_Bonding/DS_Resiliency_1-23-2020.pptx</u>
- <u>http://stugots.cisco.com/rr/BNE-KnowledgeBase/Misc_PPTs/One_Domain_per_SG_vs_Two_2-7-2020.pptx</u>
- <u>http://stugots.cisco.com/rr/BNE-KnowledgeBase/Throughput/DOCSIS_DS&US_Speed_Playbook_8-5-16.ppt</u>
 - Many of other resources under Throughput Section
- <u>http://stugots.cisco.com/rr/BNE-KnowledgeBase/D3%231/cBR-8_OFDMA_Configuration_3-2020.pptx</u>
 - Many of other resources under D3.1 Section
- Understanding US Ranging
 - http://stugots.cisco.com/rr/BNE-KnowledgeBase/Articles/CM_Upstream_Ranging_4-22-17.doc
 - <u>http://stugots.cisco.com/rr/BNE-KnowledgeBase/Articles/Modem_Provisioning_3-20-2020.doc</u>

··||...|.. cisco